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Tightness of Synchronous Processes

Peter Glynn*

Karl Sigman**

Abstract

Let X = {X(t) :t > O} be a positive recurrent synchronous process (PRS), that is, a
process for which there exists an increasing sequence of random times v = {r(k)} such
that for each k the distribution ofa,(k) o X = {X(¢t+ r(k)) : t > 0} is the same and the
cycle lengths T, = t(n+1)—r(n) have finite first moment. Whereas the ergodic properties
of such processeé are well known in the literature, the same is not so for the distributional
properties of either the marginals X(t) or more generally tﬁe shifted processes §,X =
{X(s+1t):t> 0) in function space. In the present paper we show that these distributions
are in fact tight. In contrast to classical regenc:rative processes we -also-show th?/& the
standard types of regularity assumptions (non-lattice cycle length distribution, mixing)
do not ensure weak convergence to steady-state for a PRS. Applications are given in
the context of one-dependent regenerative (od-R) processes. These arise in the queueing

models that motivated this paper.
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1. Preliminaries

Throughout this paper, X = {X(¢t) : t > 0} will denote a stochastic process with a complete separable

metric state space S and having paths in the space D = Dj3[0,00) of functions f : Ry — § that are right
continuous and have left hand limits. D is endowed with the Skorohod topology and is a complete separable
metric space. (2, F, P) will denote the underlying probability space and we view X as a random element

def

of D. Let A denote an arbitrary fixed element not in the set S. We then endow § = S U {A} with the

one-point compactification topology.

Definition 1.1. X is said to be a synchronous process with respect to the random times 0 = r(-1) <
7(0) < 7(1) < -+ ( with limp_oo 7{n) =00 a.5. ) if {X, : n > 2} forms a stationary sequence in the space

o0
. where

_[X(r(n=1)+1t), if0<t<Ty;
Xalt) = {A, ift > Th.

T, < r(n) = 7(n = 1) is called the n** cycle length, X, is called the n'* cycle and we refer to (r(n)) as the

synch-times for X with counting process N(t) = max{n > 0:r(n) < t}.

The important point here is that at the random times r(k), X(¢t) and its future probabilistically start
over. However, in contrast to classical regenerative processes, the future is not necessarily independent of
any of the past {r(1),...,7(k); X(s) : 0 < s < r(k)}. In particular 7 does not (in general) form a renewal

process and hence the renewal equation does not apply to synchronous processes.

Definition 1.2. A synchronous process X is called non-delayed if 7(0) = 0 a.s.; delayed otherwise. It
is called positive recurrent if E(T;) < oo, null recurrent otherwise. A af E'T}I'.T is called the rate of the

synch times.

From now on. PRS will be used to abbreviate positive recurrent synchronous process.
Other names have been given to a synchronous process; for example Serfozo {1972) refers to them as
semi-stationary processes. In Rolski[1981] they arise as Palm versions of stationary processes (associated

with point processes). Closely reiated to this is the general theory of stationary marked point processes.

In any case, the ergodic properties of synchronous processes are well known in the literature. We state
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several such results the proofs of which can be found in, for example Baccelli and Bremaud [1987], Daly and
Vere-Jones(1988], Franken et al (1981], Glynn and Sigman {1989], Rolski{1981] and Serfozo[1972).

Let 8, : Ds — Ds denote the shift operator (8:x)(s) = z(t + s).

Theorem 1.1. Suppose X is a PRS and f : Ds — R is measurable. Let J, = Jo(f) = def f'(")n f(fco X)dr.

r(n-

If Jo(If]) < o0 a.s. and if either f > 0 a.s. or E{J1(|f]})} < oo then

. _ E{nir)
‘l_l.rg /f(0 o X)d = FOI) as. (1.1)

where I denotes the invariant o-field associated with {(.Xn,7Tn)}.
Let P° denote the probability measure under which X is non-delayed, that is, P°(X € A) = P(6,1)0X €

A).

Corollary 1.1. Under the conditions of Theorem 1.1, if in addition I is trivial (every set has probability

0 or 1) then {Jn,T, : n > 1} is ergodic and hence a.s.

lim %/0 £(8, 0 X)ds = ﬁ;‘} = ,\/ P%(8, 0 X € A; (1) > s5)ds. (1.4)

t—00
Under these circumstances, X is called ergodic.

The following Corollary follows from (1.1) by an elementary application of Fubini’s Theorem and the

Bounded Convergence Theorem.

Corollary 1.2. Under the hypothesis of Theorem 1.1, if in addition [ is b .nded then

— ey def 1 def o [ E{2r|T}
R 1 [ B0,0 30 — x(n ¥ £ { EELL (15)

T above defines a measure on D and (for reasons given below in Proposition 1.1) is called the stationary
probability measure for X. In particular, by choosing f = 14 (an indicator function), we have i ( A) — 7(A)

for each Borel set A of D; thus the Cesaro averaged distributions converge weakly.

Proposition 1.1. Let = be the stationary measure of a PRS X. Then under x, § = (6,) is measure

preserving on D, that is, for each Borel set A, =(A) = =(8_,A) for all s > 0. In particular, if X has

distribution 7, then X is time stationary, that is, §,.X has the same distribution for each t > 0.
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Let P* denote the probability measure under which X has distribution =, that is, P*(X € A) = =(A).

From (1.4) we obtain for an ergodic synchronous process that
o
P‘(XeA):A/ P98, 0 X € A;7(1) > s)ds. (1.6)
0

If .X is positive recurrent but not ergodic then the RHS of (1.6) still defines a measure on D (but not

necessarily the same as the r from (1.5)). In fact, more can be said:

Proposition 1.2 For a PRS the RHS of (1.6) defines a measure on D (in general, not the same as 7 ) under

which 8 = (8,) is measure preserving.
Proof: Clearly the RHS of (1.6) defines a probability measure on D. Call this measure ¢. Then
[==]
B(B_,A) = A/ P8,y 0 X € A; 7(1) > s)ds
0
(1)
= /\E{/ 1A(0;+,X)d8}
0

r(1)+t
= AE{/ 14(6,X)ds}
t

r(1)+t

=¢(A)—AE{'[) IA(G,X)ds—/m 1.4(8,X)ds}.

The result follows since (by the definition of synchronous) the last two integrals above have the same

distributicn. W

Let X be PRS with steady-state distribution x. One might expect to obtain weak convergence, as
t — 00, of the measures d&ef P(X(t) € ) or yy = P{(6:X € -) by placing some further regularity
assumptions on X such as a non-lattice cycle length distribution and/or mixing cycles. Unfortunately, as
the following example shows, one must be very careful in asserting stronger modes of convergence for a PRS
than the Cesaro type obtained from Theorem 1.1 or Corollary 1.2.

Example (1) A PRS having both a spread-out cycle length distribution and mixing cycles that does
not converge weakly. Let B(t) denote the time until the next integer point strictly after time ¢. This is
actually the forward recurrence time for a renewal process {tn,} with t, = n, n > 0. The steady-state
marginal distribution of B is Unif(0,1). Also, since B is regenerative (it regenerates at times t,), B(t)
converges in the Cesaro sense to Unif(0, 1) regardless of initial conditions.
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Let (U,) be i.i.d. ~ Unif(.5,1) and define 7(n) = n+ U,. [n particular n+ 5< r(n)<n+1,n>0,
and the cycle lengths T, 4f r(n) —r(n-1) = U, ~ Us—1 + 1 are one-dependent, that is, T,, depends upon
Tn41 but is independent of T, ¢, k > 2. Moreover the cycle length distribution has an absolutely continuous
component and hence is non-lattice and spread-out. Clearly B is PRS wrt r and the cycles of B are also
one-dependent. In particular they are mixing, that is, P(Xn € A, Xi4n € B) — P(X, € A)P(Xi4n € B)
tends to 0 as k tends to o< for all sets 4, B. Now consider the delayed version (with respect to r); B(0) = 1.
In this case B(n) = 1, n > 1. Weak convergence is therefore imp;assible since if B(t) converges weakly
then its weak limit must be Unif(0, 1) (the same as its Cesaro limit) and all convergent subsequences B(s;)
must converge to Unif(0,1) also. In fact we now will show that the non-delayed version (with respect to r)
X(t) = B;,+¢ also does not converge weakly. To this end simply observe that at times s, = (2n + 1)/2 we
have .5 < X(s,) < 1 and hence no mass occurs on (0,.5). But, as before, X(t) converges to Unif(0,1) in

the Cesaro sense, since X is actually the same as B with the random initial condition B(0) = r(1).

Given a synchronous process X define a new process X by ‘X (t) = 6,0 X.

Proposition 1.3 If X is synchronous then X is synchronous with the same synch times as X. The paths

of X are continuous; in particular they lie in Dp;.

Proof:  The state space of X is the complete separable metric space Ds. Moreover, the sample paths of
X are actually continuous, that is, if £ € D and s — ¢ then 6,2 — %z in the Skorohod topology of D

{see Lemmal.l of Rolski(1981})). It is irnmediate from the definition of synchronous process for X that the

distribution of X (and its future) starts over at the synch timesof X. B

Remark (1.1): In the case of a discrete time process {.X(k) : ¥ > 0}, one can convert to

continuous time by defining X (t) = X({t]).

2. Tightness

Although weak convergence of a PRS can not be obtained in general {and placing conditions on the cycles

does not appear to help), we do have

Theorem 2.1. A PRS is tight, that is. for each ¢ > 0 there exists a compact set K(¢) C & such that




—-—c

P(X(t) € K(¢€)) > 1 —cforallt > 0. In fact {6; 0 X} is tight, that is, for each € > 0 there exists a compact

set C(€) C D such that P({X)(t) € C(e)) > 1 — ¢ for all t > 0.

Proof: Let ¥ denote the measure from Proposition 1.2. Let F(z) denote the cdf for r(1). Fix ¢ > 0 and

then choose an a = a(€) > 0 such that F(a) < eA/2 (Recall that we are assuming that the cycle lengths are

strictly positive). From (1.6) it follows that
a a
w(A4) > A/ P°@,0X € A;r(1) > s)ds > A/ P°(B,0 X € A4;7(1) > a)ds. (2.1
0 0

Observe that
P°8,0X € A)= P°(B,0 X € A;7(1) > a)+ P°(B,0 X € A;7(1) < a)

< P%°(8,0 X € A; (1) > a) + F(a).

Substituting the above into (2.7) we obtain
a
Y(A) > /\/ P%#,0 X € A)ds — aF(a),
0

and hence

/a P8, 0 X € A)ds < A~'4(A) + ae/2. (2.8)
0

For each u > 0 and each compact set B of S define A(B,u) = {z € D : z(t) € B:t € [u,u + a]}. By the
compact containment condition (see Ethier and Kurtz[1986], remark 7.3, page 129) there exists a compact
set K; = Ki(¢,a) in S such that

Y(A(Ky,u)) > 1 — Aae/2. (2.9)

Moreover, by stationarity of X under ¥, K, doesn’t depend upon u. For any set A let A denote the

complement of the set. From (2.8) and (2.9) we obtain

/u P°(8, 0 X € A(K;,u))ds < A'1¢(I([x'1,u)) + ae/2
0 (2.10)

< ae.

But u+a € s+ [u,u + a] for each s € [0, a] and hence for each s € [0,a] P°(X(u+a) € K1) < P'(f,0X €

A(Ky,u)). Substituting into (2.10) yields

Pl (X(u+a)eR1)<e. u>0, .
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or equivalently

PUX(t)eR|)>1—-¢ t>a. (2.11)

Using the compact containment condition again there exists a compact set Kz = K(¢,a) such that
P*(X € A(K2,0)) > 1 —¢; in particular P°(X(t) € K3) > 1 — ¢ for all t € [0,a]. Thus for K, = K, U K,
we obtain P%(X(t) € K.) > 1 — ¢ for all t > 0. Thus we have shown that the marginal distributions of a
non-delayed PRS are in fact tight. Moreover, by Proposition 1.3 we also obtain tightness of the non-delayed
X. To handle the delayed case, suppose X is delayed, fix ¢ > 0 and choose an M large enough so that
P(r(0) > M) < €. Then for any compact set & if ¢t > A then

P(XQ)eRK)S P(XQ)EN;T(0) < M) +e¢

< P(X(r(0)+t-s)e K. some s€[0,M])+e¢
(2.12)
=PYX(t-M+s)e K, some se€ 0,M) +¢

= PYX(u+s)€EK, some s€[0,M]) +e.
where u = t ~ M. But now we are dealing with the non-delayed version of X which we just showed
was tight; thus for any § > 0 we can choose a compact set of paths C(¢) C D such that for all £ > 0.
P%(8; 0 X € C(€)) > 1 — 6. Using this fact together with the compact containment condition, it follows the
last probability in (2.12) can be made arbitrarily small (uniformly over u > 0) for appropriate compact sets

K C S. This is because the complement of the event

{X(u+s)eK, some sel(0,M]}
is the event

{X(u+s)e K, forall se€(0,M]}.

For t < M we can use the compact containment condition on X over the time interval {0, M) to obtain
a compact set K such that P(X(t) € K) > 1 — ¢ for all ¢t € [0, M]. The proof is now complete. The last

assertion of our theorem follows by applying our result to synchroncus process X (of Proposition 1.3). &

Corollary 2.1 Suppose X is a PRS and let Y(t) =ty 41 — ¢ denote the time until the next synch time

after time t. Then Y is tight.
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Proof: Y is easiiy seen to be a PRS with the same synch times as X. W

Corollary 2.2 If X is a PRS and f is continuous mapping from S into a complete separable metric space

Sy then {f(X(t))} is tight.

Proof:  f(X(t)) has paths in Ds, and is PRS wrt the same synch times as X. W

Corollary 2.2 may fail if the path regularity of D is not enforced. The importance of this is that
measurable functions of a PRS X need not be tight since f(X(¢)) may no longer have paths in D.

Example (2) A functional of a PRS that is not tight. Let B(t) be the forward recurrence time for the
deterministic renewal process {tn}; tn = n (n > 0). Define f(z) = 1/z, =z €(0,1). Then f(B(t)) does not
have a limit from the left at any integer point; in fact for each n, f(B(t)) — o0 as t — n. In particular,

F(B(t)) is not tight.

3. Applications to queueing models

In Sigman [1989], a variety of queueing models were shown to have representations in continuous time as a
one-dependent regenerative process {0d-R). An od-R process X is a synchronous process for which the cycles
are one dependent, that is X, is dependent upon X, but is independent of {X,_;;k > 2}. In particular,
a positive recurrent od-R process is an ergodic PRS.

Together with Theorem 2.1 we now can obtain a vatiety of new tightness results for such things as queue
length. We present two such results as an itiustration.

One large class of models are those that can be represented at exogenous arrival epochs as a Harris
recurrent Markov chain C = {Ch}. As shown in Sigman [1989] these models inherit a one-dependent
regenerative structure (od-R) from C when represented as a process Z in continuons time. Our first example
is the simplest non-trivial example of this type; the classic FIFO GI/GI/c queue (see for example. page 493
of Wolff{1989]). The interarrival time and service time distributions are only assumed to have finite first
moment (no non-lattice or spread-out assumptions!). A and u denote the arrival and service rate respectively.
Q(t) denotes the number of customers waiting in the queue (not in service) at time t. Y (t) is the c-tuple of
residual service times. B(t) denotes the forward recurrence time of the exogenous renewal process of arrivals.
K (t) denotes a list of the service times of all customers waiting in the queue at time t. V(t) denotes the

3
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total work in system process, that is. the sum cof all remaining service times of all customers in the system

at time ¢.

Proposition 3.1. For a FIFO GI1/GI/c queue, if 0 < A < cu then regardless of initial conditions the

queue length process Q(t) and the total work in system process V(t) are tight.

Proof: From Proposition 8.1 of Sigman [1989] it follows that the process Z(t) = (Q(t). Y (). B(t). K (¢t
15 a positive, Jarris Recurrent Markov process and hence is positive recurrent od-R {Theorem 2 of Sigman
[1989]). Both V() and Q(t) are continuous functionals of Z and hence for any fixed inital state each furins

an (ergodic) PRS (with the same synch times as Z) and hence is tight. B

We mention that the same kind of resuit above can be derived for open queueing networks having 1.1.d.
exogenous interarrival times (general distribution, finite fiorst moment). i.i.d. service times (general distri-
butions, finite first moment) and Markovian routing. These are sometimes called Open Jackson Networks
with general i.1.d. input.

Our second example is a single server queue with input (the marked point process of arrival and service
times) governed by a Harris recurrent Markov process {HRMP) (see section 7 of Sigman [1989]). The idea
here is that the queue inherits the od-R structure of its input. A denotes the long run arrival rate and u the

def

long run service rate: 0 = A/u. We do not assume the FIFO discipline: any work conserving discipline 1s

allowed.

Proposition 3.2. For a single server queue with input governed by a positive HRMP, if 0 < p < | then
regardless of mitial cunditions the queue length process Q(t) and the total work in system process V(t) are

tight.

Proof: Analogous to the proof of Proposition 5.i. from Praposition 7.1 of Sigman [1989], both Q(¢) and

V(t) are continuous functionals of a positive HRMP and hence PRS. &

Remark(3.1): It is known that in general, Q(t) and V(t) for the above tnodeis do not
converge weakly to their steady-state distributions. For the FIFO GI/GI/c, if the inter-
arrival time distribution is spread-out then weak convergence is obtained (in fact in total

variation).
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